COMPUTER SCIENCE (CS)

CS 6010. Principles of Design. 3 Credit Hours.
This is an interactive hands-on course that will teach students the principles of design at the individual level.

CS 6035. Introduction to Information Security. 3 Credit Hours.
A broad spectrum of information security: threats, basic cryptography, software vulnerabilities, programming for malware, operating system protections, network security, privacy, data mining, computer crime.

CS 6150. null. 3 Credit Hours.
Exploring challenges faced by underserved populations and developing countries from a computing perspective.

CS 6210. Advanced Operating Systems. 3 Credit Hours.
Introduction to graduate-level topics in operating systems using research papers, textbook excerpts, and projects. Provides students thorough comprehension of distributed and parallel computer systems.

CS 6230. High-Performance Parallel Computing: Tools and Applications. 3 Credit Hours.
Introduction to MIMD parallel computation, using textbook excerpts, research papers, and projects on multiple parallel machines. Emphasizes practical issues in high-performance computing.

CS 6235. Real-Time System Concepts and Implementation. 3 Credit Hours.
Principles of real-time systems, as occurring in robotics and manufacturing, interactive, and multimedia applications. Reviews and uses real-time operating systems.

CS 6238. Secure Computer Systems. 3 Credit Hours.
Design principles of secure systems, authentication, access control and authorization, discretionary and mandatory security policies, secure kernel design, and secure databases.

CS 6241. Design and Implementation of Compilers. 3 Credit Hours.
Design and implementation of modern compilers, focusing upon optimization and code generation.

CS 6245. Compiling for Parallelism. 3 Credit Hours.
Design and implementation of compilers for parallel and distributed computers, focusing upon optimization and code generation.

CS 6246. Object-Oriented Systems and Languages. 3 Credit Hours.
Design and implementation of object-oriented systems. Aspect-oriented programming, type systems, OO language implementation (virtual dispatch, GC), OO language design (genericity, reflection, mixins).

CS 6250. Computer Networks. 3 Credit Hours.
Principles and practice of computer networks, including signaling and framing, error control, medium access, routing, congestion control, end-to-end transport, and network APIs.

CS 6255. Principles of Network Management. 3 Credit Hours.
Focus on network, system, and applications management. Principles and practice of various network management standards will be presented. Course includes project assignment.

CS 6260. Applied Cryptography. 3 Credit Hours.
Cryptographic algorithms, cryptanalysis, symmetric cryptography, public key cryptography, DES, AES, RSA, hash and MAC functions, digital signatures, pseudo-random generators, cryptographic protocols, SSL/TLS, SET. Credit not allowed for both CS 6260 and ECE 6280.

CS 6262. Network Security. 3 Credit Hours.
Design principles of secure network protocols and systems, authentication, integrity, confidentiality, privacy, information hiding, digital watermarking, access control, firewall, intrusion detection, and case studies.

CS 6265. Information Security Laboratory. 3 Credit Hours.
Computer systems and network vulnerabilities, information warfare, network and operating system security techniques, security analysis tools.

CS 6266. Information Security Practicum. 5 Credit Hours.
Capstone independent study placing each student in a commercial, industrial, academic, or government setting where they must solve real-world security problems.

CS 6269. Formal Models and Methods for Information Assurance. 3 Credit Hours.
Logical foundations of high-assurance systems, formal models for access control, authentication, and trust; techniques for constructing high-assurance systems.

CS 6280. Performance Evaluation of Communication Networks. 3 Credit Hours.
Methods for evaluating the performance of communication networks with emphasis on modeling, mathematical analysis, computer simulation, and measurement.

CS 6290. High-Performance Computer Architecture. 3 Credit Hours.
Topics concerning very high-performance computers including techniques exploiting parallelism in single and multiple processor systems. Credit not allowed for both CS 6290 and any of the following courses: CS 4290, ECE 4100, ECE 6100.

CS 6300. Software Development Process. 3 Credit Hours.
The process of developing software systems. Includes development and assessment of processes, their instantiation in actual product development, and techniques ensuring quality of developed products.

CS 6310. Software Architecture and Design. 3 Credit Hours.
Principles and concepts involved in the design and analysis of large software systems.

CS 6320. Software Requirements Analysis and Specification. 3 Credit Hours.
Methods and principles for determining, documenting, analyzing, and formally specifying requirements for software systems.

CS 6330. Software Generation, Testing, and Maintenance. 3 Credit Hours.
Introduction to methods and principles for programming, testing, and managing the evolution of software systems.

CS 6340. Advanced Topics in Software Analysis and Testing. 3 Credit Hours.
Fundamental principles and advanced techniques for static and dynamic program analysis and software testing. Software reliability, resilience, and trustworthiness.

CS 6365. Intro Enterprise Comput.. 3 Credit Hours.
Survey of basic software concepts and techniques used in mission-critical systems and applications, combined with in-depth study of fundamental principles underlying enterprise computing. Credit not allowed for both CS 6365 and CS 4365.

CS 6390. Programming Language Design. 3 Credit Hours.
Design, structure, and goals of programming languages. Object-oriented, logic, functional, and traditional languages. Semantic models. Parallel programming languages.
CS 6400. Database Systems Concepts and Design. 3 Credit Hours. Study of fundamental concepts with regard to relational databases. Topics covered include database design, query processing, concurrency control, and recovery. Credit not given for both CS 6400 and CS 6754.

CS 6402. Databases and Information Security. 3 Credit Hours. Fundamentals of designing and using databases: conceptual data models to database-specific models, SQL, storage structures. Security-related topics include privacy, access control, backup, recovery, SQL injection. Credit not allowed for both CS 6402 and CS 4400.

CS 6411. Object-Oriented Database Models and Systems. 3 Credit Hours. Study of advanced database concepts as they apply to object-oriented database systems. Topics include semantic data models, object-oriented query languages, tools, and applications.

CS 6421. Temporal, Spatial and Active Databases. 3 Credit Hours. Study of advanced database concepts for temporal databases with emphasis on storage structure, processing and query languages, as well as active database concepts and implementation.

CS 6422. Database System Implementation. 3 Credit Hours. Design and implementation of a database system covering: storage manager, query optimizer, transaction manager, and recovery manager. Study of the advantages of different implementation algorithms. Credit not allowed for both CS 6422 and CS 4420.

CS 6430. Parallel and Distributed Database Systems and Applications. 3 Credit Hours. Study of algorithms and performance in advanced databases. Systems include parallel, distributed, and client-server databases. Applications include data mining and on-line analytical processing.

CS 6440. Information to Health Informatics. 3 Credit Hours. A broad review of the US health system and the application of informatics to the clinical practice of medicine, digital imaging, public health and bioinformatics.

CS 6451. Introduction to Human-Centered Computing. 3 Credit Hours. Introduction to the range of issues across the HCC disciplines, including design and research methodologies: cognitive, social, and cultural theories; assessment and evaluation: ethical issues.

CS 6452. Prototyping Interactive Systems. 3 Credit Hours. Introduction to design, prototyping and implementation of systems for human-centered computing. Focuses on core concepts in computer science and implications for interactive systems.

CS 6455. User Interface Design and Evaluation. 3 Credit Hours. Examines usability in the software development process with an emphasis on usability, requirements, methodology, design, and evaluation.

CS 6456. Principles of User Interface Software. 3 Credit Hours. Considers the architectural and algorithmic principles behind the implementation of interactive software systems and the tools that support them.

CS 6457. Video Game Design and Programming. 3 Credit Hours. Techniques for electronic game design and programming, including graphics, game engines, animation, behavioral control for autonomous characters, interaction, social and interface issues of multi-user play. Credit not allowed for both CS 6457 and CS 4455.

CS 6460. Educational Technology: Conceptual Foundations. 3 Credit Hours. Introduction to educational technology, with an emphasis on theoretical foundations. Introduces basic philosophies, approaches, and technologies. Analyzes issues surrounding technology's impact on education.

CS 6461. CS Education Research. 3 Credit Hours. Introduction to computing education research (CER). History and influential early work. Learning goals for different populations. Design of research studies in CER.

CS 6465. Computational Journalism. 3 Credit Hours. Technology is rapidly affecting how news information is gathered, reported, visualized, aggregated, distributed, and consumed. This class studies the computational technologies that impact journalism. Credit not allowed for both CS 6455 and CS 4464.

CS 6470. Design of Online Communities. 3 Credit Hours. Introduction to the design of online communities. Students study an existing community in depth, and then develop a new community design. Credit not allowed for both CS 6470 and CS 4472.

CS 6474. Social Computing. 3 Credit Hours. Design and prototype new social computing systems, as well as analyze social media data.

CS 6475. Computational Photography. 3 Credit Hours. This class explores the impact of computation on the entire workflow of photography, from how light is captured by a camera, to how the images are processed, enhanced, and improved to generate novel photographs.

CS 6476. Introduction to Computer Vision GR. 3 Credit Hours. Introduction to computer vision including fundamentals of image formation, camera imaging geometry, feature detection and matching, stereo, motion estimation and tracking, image classification and scene understanding. Credit not awarded for both CS 6476 and CS 4495 or CS 4476.

CS 6480. Computer Visualization Techniques. 3 Credit Hours. Principles, techniques, and practice in data, information, multivariate, and scientific visualization. Includes visualization methods, data structures, examples, and tools.

CS 6485. Visualization Methods for Science and Engineering. 3 Credit Hours. Algorithms, software, and practical applications of visualization techniques in science, engineering, business, and medicine. Includes data structures, multivariate visualization, interactive visualization, and visual representations and examples. Computer science students cannot receive credit for this course.

CS 6491. Foundations of Computer Graphics. 3 Credit Hours. Mathematical/physical/perceptual principles and modeling/rendering techniques used to create, represent, display, and animate models of 3D shapes and their properties.

CS 6505. Computability, Algorithms, and Complexity. 3 Credit Hours. Important concepts from computability theory; techniques for designing algorithms for combinatorial, algebraic, and number-theoretic problems; basic concepts such as NP-Completeness from computational complexity theory.

CS 6520. Computational Complexity Theory. 3 Credit Hours. Introduction to resource-bounded computations, central complexity-theoretic concepts such as complexity classes, reducibility, completeness, and intractability.
CS 6550. Design and Analysis of Algorithms. 3 Credit Hours.
Advanced techniques for designing and analyzing efficient algorithms for combinatorial, algebraic, and number-theoretic problems. Credit not allowed for both CS 6550 and CS 4540.

CS 6601. Artificial Intelligence. 3 Credit Hours.
Basic concepts and methods of artificial intelligence including both symbolic/conceptual and numerical/probabilistic techniques.

CS 6670. Distributed Control Algorithms. 3 Credit Hours.
Algorithms for synchronous, asynchronous, and partially synchronous networks; analysis, control, and implementation of distributed systems such as robot fleets, animal groups.

CS 6675. Advanced Internet Computing Systems and Applications. 3 Credit Hours.
Survey of basic Internet computing concepts and techniques used in Internet systems and applications, combined with in-depth study of fundamental principles underlying Internet computing. Credit not allowed for both CS 6675 and CS 4675.

CS 6705. Applications of Artificial Intelligence. 3 Credit Hours.
A study of the principles and practice of artificial intelligence in areas other than computer science, with particular focus on engineering, science, and business applications. Computer science majors cannot receive credit for this course.

CS 6725. Information Security Strategies and Policies. 3 Credit Hours.
Information security vulnerabilities and risks; legal, cost, privacy, and technology constraints; derivation of strategies; technical and procedural means of achieving desired ends.

CS 6726. Privacy, Technology, Policy, and Law. 3 Credit Hours.
This course takes a multi-disciplinary approach to privacy, a topic of great interest in the technology, policy, ethics, law, and business realms. Credit will not be awarded for both CS 6726 and CS 4726 or MGT 4726 or MGT 6726.

CS 6750. Human-Computer Interaction. 3 Credit Hours.
Describes the characteristics of interaction between humans and computers and demonstrates techniques for the evaluation of user-centered systems. Crosslisted with PSYC 6750.

CS 6753. Human-Computer Interaction-Professional Preparation and Practice. 1 Credit Hour.
Preparation for a professional career in HCI. Speakers. Atlanta-area lab visits. Career trajectories. Project presentations. Technical, resume and interviewing skills, Atlanta-area HCI resources. Credit not allowed for both CS 6753 and PSYC 6753 or LCC 6753.

CS 6754. Engineering Data Base Management Systems. 3 Credit Hours.
Modeling and managing engineering information systems, integration of design and manufacturing functions in engineering product development, logical models of engineering product and processes. Credit not given for CS 6400 and CS 6754. Crosslisted with ME 6754.

CS 6755. Human-Computer Interaction Foundations. 3 Credit Hours.
Describes the theory and practice of designing effective and efficient interactions between people and technology. Students do not receive credit for both CS 6755 and PSYC 6755.

CS 6763. Design of Design Environments. 3 Credit Hours.
Analysis of design processes; analysis of current design tools at both the user interface and functional levels; procedures for developing better design tools. Credit not allowed for both CS 6763 and ID 6763 or COA 6763.

CS 6764. Geometric Modeling. 3 Credit Hours.
Software development course focusing on 3D geometric constructions and modeling; emphasizes solid modeling and its role in design. Crosslisted with COA 6764.

CS 6770. Mixed Reality Experience Design. 3 Credit Hours.
Introduction to the design of Mixed Reality experiences. Focuses on informal design, integration of media theory, HCI and technology issues. Significant group design projects.

CS 6780. Medical Image Processing. 3 Credit Hours.
A study of methods for enhancing, analyzing, interpreting, and visualizing information from two- and three-dimensional data obtained from a variety of medical image modalities. Crosslisted with ECE and BMED 6780.

CS 6795. Introduction to Cognitive Science. 3 Credit Hours.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with ISYE and PSYC 6795.

CS 6998. HCI Master's Project. 1-9 Credit Hours.

CS 6999. Master's Project. 1-9 Credit Hours.
Final project for students completing a master’s degree in the College of Computing. Repeatable for multi-semester projects.

CS 6XXX. Computer Sci Elective. 1-21 Credit Hours.

CS 7000. Master's Thesis. 1-21 Credit Hours.

CS 7001. Overview of Graduate Studies in Computing. 5 Credit Hours.
Research tools including computer systems, as well as fundamental problem-solving skills, are introduced. Lectures on current computing research are presented and projects are required. Credit not allowed in a program of study for a graduate degree.

CS 7110. Parallel Computer Architectures. 3 Credit Hours.
Issues in the design, implementation, and programming of parallel machines. Credit not allowed for both CS 7110 and CS 4233.

CS 7210. Distributed Computing. 3 Credit Hours.
Fundamental concepts in distributed systems, including global states, logical clocks, and failure models. Distributed algorithms and their implementations using advanced distributed programming systems.

CS 7230. Systems Software Design, Implementation, and Evaluation. 3 Credit Hours.
Design, implementation, and evaluation of systems software. Distributed/parallel applications will be constructed and evaluated using the systems support that is developed.

CS 7250. Broadband Networking Systems. 3 Credit Hours.
Focus on the data link layer and its relationship to layers below and above. Gigabit Ethernet, SONET, fibre channel; media including wireless, satellite, xDSL, cable.

CS 7260. Internetworking Architectures and Protocols. 3 Credit Hours.
Detailed discussion of the problems and solution techniques that arise in internetworking. Topics include routing, addressing, quality of service, and security.

CS 7270. Networked Applications and Services. 3 Credit Hours.
End-to-end functional building blocks and their use in adaptive and non-adaptive applications, including multimedia: coding, compression, security, directory services.

CS 7280. Network Science: Methods and Applications. 3 Credit Hours.
Characteristics of real networks in nature and technology, network measurement methods, network analysis, evolving networks, dynamic network processes, co-evolution of structure and function.
CS 7290. Advanced Topics in Microarchitecture and organization of high-performance processors. 3 Credit Hours.
Low-level organization and hardware algorithms for the implementation of modern high-performance microprocessors including concept designs and real-world case studies.

CS 7292. Reliability and Security in Computer Architecture. 3 Credit Hours.
Hardware support for process isolation, virtualization, debugging, and protection from side-channel attacks. Faults and failures, error tolerance, error rate budgeting, lifetime realizability of devices.

CS 7450. Information Visualization. 3 Credit Hours.
Study of computer visualization principles, techniques, and tools used for explaining and understanding symbolic, structured, and/or hierarchical information. Includes data and software visualization. Students cannot receive credit for both CS 7450 and CS 4460.

CS 7455. Issues in Human-Centered Computing. 3 Credit Hours.
In-depth focus on theoretical, methodological, conceptual, and technical issues across the HCC disciplines associated with humans (cognitive, biological, socio-cultural); design; ethics; and analysis and evaluation.

CS 7460. Collaborative Computing. 3 Credit Hours.
Introduction to computer-supported collaborative work, workflow automation, and meeting augmentation. The course deals with models, enabling technology, systems, and applications.

CS 7465. Educational Technology: Design and Evaluation. 3 Credit Hours.
Intensive project class in which students design, implement, and evaluate a piece of educational technology, applying the theory learned in Educational Technology. Conceptual Foundations.

CS 7467. Computer-Supported Collaborative Learning. 3 Credit Hours.
Computer-supported collaborative learning is the use of Internet-based technologies to support learning in social settings. Focus on issues of implementation and evaluation.

CS 7470. Mobile and Ubiquitous Computing. 3 Credit Hours.
Investigates the infrastructure required to develop mobile and ubiquitous computing applications and establishes major research themes and experimental practices.

CS 7476. Advanced Computer Vision. 3 Credit Hours.
Advanced topics in computer vision, which includes a deep dive into both the theoretical foundations of computer vision to the practical issues of building real systems that use computer vision. Credit will not be awarded for CS 7476 and CS 7495.

CS 7490. Advanced Computer Graphics. 3 Credit Hours.
Advanced techniques in realistic image synthesis based on the physics of light. Anti-aliasing, textures, surface reflectance, distribution ray tracing, volume rendering, radiosity, and image-based rendering.

CS 7491. 3D Complexity Techniques for Graphics, Modeling, and Animation. 3 Credit Hours.
Multiresolution, compression, collision, morphing, visibility, and computational geometry techniques for accessing, rendering, and animating complex 3D models in engineering, scientific, business, or entertainment applications.

CS 7492. Simulation of Biological Systems. 3 Credit Hours.
Study different computer simulation methods for use in investigating biological systems, including bio-molecules, cells and full organisms.

CS 7495. Computer Vision. 3 Credit Hours.
An introduction to computer vision and machine perception. An intensive study of the process of generating a symbolic description of the scene by interpretation of images(s). Credit will not be awarded for both CS 7495 and CS 7476.

CS 7496. Computer Animation. 3 Credit Hours.
Motion techniques for computer animation and interactive games (keyframing, procedural methods, motion capture, and simulation) and principles for storytelling, composition, lighting, and interactivity.

CS 7497. Virtual Environments. 3 Credit Hours.
An introduction to virtual reality and virtual environments. Issues covered will include VR technology, software design, 3D human-computer interaction, and applications for VR.

CS 7499. 3D Reconstruction and Mapping in Computer Vision, Robotics, and Augmented Reality. 3 Credit Hours.
In this course we study the principles and algorithms underlying 3D Reconstruction and Mapping in Computer Vision, Robotics, and Augmented Reality.

CS 7510. Graph Algorithms. 3 Credit Hours.
Algorithms for graph problems such as maximum flow, matching, network reliability, minimum cuts, covering, coloring, planarity, shortest paths, and connectivity. Crosslisted with MATH 7510 and ISYE 7510.

CS 7520. Approximation Algorithms. 3 Credit Hours.
Approximation algorithms for NP-hard optimization problems, design and analysis techniques for such algorithms. Credit not allowed for both CS 7520 and CS 4520.

CS 7525. Algorithmic Game Theory and Economics. 3 Credit Hours.
Algorithmic aspects of game theory covering topics at the intersection of computer science, economics, and game theory with applications to domains such as internet.

CS 7530. Randomized Algorithms. 3 Credit Hours.
Techniques for designing and analyzing randomized algorithms, derandomization techniques. Credit not allowed for both CS 7530 and CS 4530.

CS 7535. Markov Chain Monte Carlo Algorithms. 3 Credit Hours.
This course studies Markov Chain Monte Carlo algorithms, widely-used in a variety of scientific fields, focusing on mathematical techniques for analyzing their convergence rates.

CS 7540. Spectral Algorithms and Representations. 3 Credit Hours.
Spectral methods mathematics and algorithmic insights driving applications with large data sets in domains such as web-search, information-retrieval, and medical diagnosis and prediction.

CS 7545. Theoretical Foundations of Machine Learning. 3 Credit Hours.
This course provides a basic arsenal of powerful mathematical tools for the analysis of learning algorithms, focusing on both statistical and computational aspects.

CS 7560. Theoretical Foundations of Cryptography. 3 Credit Hours.
One-way functions, pseudorandomness, public-key and identity-based cryptology, commitment and zero knowledge.

CS 7610. Modeling and Design. 3 Credit Hours.
Information-processing theories of modeling and design; topics include design decision making, problem solving and learning, and knowledge-based modeling and design.

CS 7611. AI Problem Solving. 3 Credit Hours.
Basic concepts and methods of AI problem solving, knowledge representation, reasoning, and learning.
CS 7612. Artificial Intelligence Planning. 3 Credit Hours.
Symbolic numerical techniques that allow intelligent systems to decide how they should act in order to achieve their goals, including action and plan representation, plan synthesis and reasoning, analysis of planning algorithms, plan execution and monitoring, plan reuse and learning, and applications.

CS 7613. Knowledge Systems Engineering. 3 Credit Hours.
Techniques for constructing large knowledge-based systems. Advanced symbolic AI techniques. Constraint systems.

CS 7615. Knowledge Agents. 3 Credit Hours.
Knowledge-based interactive systems, knowledge-based autonomous agents, agent architectures, learning and adaptation, agent evolution.

CS 7616. Pattern Recognition. 3 Credit Hours.
This course provides an introduction to the theory and practice of pattern recognition. It emphasizes unifying concepts and the analysis of real-world datasets.

CS 7620. Case-Based Reasoning. 3 Credit Hours.
Topics include case representation, indexing and retrieval, adaptation, interpretive CBR, the cognitive model that CBR implies, and its implications for creativity, decision aiding, and education. Credit not allowed for both CS 7620 and CS 4622.

CS 7630. Autonomous Robotics. 3 Credit Hours.
The principles and practice of autonomous robotics including behavior-based design and architectures, adaptive learning and team behavior, and the role of perception within robotic systems.

CS 7631. Autonomous Multi-Robot Systems. 3 Credit Hours.
In-depth examination of the current research on multi-robot systems. Students develop and critically analyze a multi-robot system.

CS 7632. Game Artificial Intelligence. 3 Credit Hours.
An exploration of how artificial intelligence is used in modern digital computer games. Credit will not be awarded for CS 7632 and CS 4731, CS 7632 and LCC 4731 or CS 7632 and LMC 4731.

CS 7633. Human-Robot Interaction. 3 Credit Hours.
Survey of the state of the art in HRI research, introduction to statistical methods for HRI research, research project studio.

CS 7634. AI Storytelling in Virtual Worlds. 3 Credit Hours.
An exploration of how artificial intelligence can enable us to use stories in virtual worlds for the purpose of entertaining, educatintg, and training human users.

CS 7636. Computational Perception. 3 Credit Hours.
Study of statistical and algorithmic methods for sensing people using video and audio. Topics include face detection and recognition, figure tracking, and audio-visual sensing.

CS 7637. Knowledge-Based AI. 3 Credit Hours.
Structured knowledge representation; knowledge-based methods of reasoning and learning; problem-solving, modeling and design.

CS 7640. Learning in Autonomous Agents. 3 Credit Hours.
An in-depth look at agents that learn, including intelligent systems, robots, and humans. Design and implementation of computer models of learning and adaptation in autonomous intelligent agents.

CS 7641. Machine Learning. 3 Credit Hours.
Machine learning techniques and applications. Topics include foundational issues; inductive, analytical, numerical, and theoretical approaches; and real-world applications.

CS 7642. Reinforcement Learning and Decision Making. 3 Credit Hours.
Efficient algorithms for multiagent planning, and approaches to learning near-optimal decisions using possibly partially observable Markov decision processes; stochastic and repeated games; and reinforcement learning.

CS 7643. Deep Learning. 3 Credit Hours.
This course will cover theory and practice of deep learning, including neural network and structured models, optimization algorithms, and applications to perception and Artificial Intelligence.

CS 7645. Numerical Machine Learning. 3 Credit Hours.
This course explores problems in classification/pattern recognition (OCR, speech, vision, fault detection, medical diagnosis), regression/function approximation, robot control, and reinforcement learning.

CS 7646. Machine Learning for Trading. 3 Credit Hours.
Introduces machine learning based trading strategies. Topics: Information processing, probabilistic analysis, portfolio construction, generation of market orders, KNN, random forests.

CS 7649. Robot Intelligence: Planning. 3 Credit Hours.
We investigate algorithms for robots and complex systems that make intelligent decisions. Emphasis on the theoretical and empirical properties of classical, geometric, stochastic/dynamic planning.

CS 7650. Natural Language. 3 Credit Hours.
Topics include lexical analysis, parsing, interpretation of sentences, semantic representation, organization of knowledge, inference mechanisms. Newer approaches combining statistical language processing and information retrieval techniques. Credit not allowed for both CS 7650 and CS 4650.

CS 7695. Philosophy of Cognition. 3 Credit Hours.
Examines problems in the foundations of cognition in relation to current issues in cognitive sciences. Topics include meaning, mental imagery, consciousness, and mind/body problem.

CS 7697. Cognitive Models of Science and Technology. 3 Credit Hours.
Examines how models of reasoning and representation developed in the cognitive sciences can provide a basis for an enriched understanding of scientific theories and research practices in science and technology.

CS 7785. Introduction to Robotics Research. 3 Credit Hours.
Familiarizes students with the core areas of robotics; mechanics, control, perception, AI, and autonomy. Provides an introduction to the mathematical tools required in robotics research.

CS 7790. Cognitive Modeling. 4 Credit Hours.
A hands-on course covering a range of cognitive modeling methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with ISYE and PSYC 7790.

CS 7999. Preparation for Doctoral Qualifying Exams. 1-21 Credit Hours.
Consent of the College required.

CS 8001. Seminar. 1 Credit Hour.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8002. Seminar. 2 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8003. Seminar. 3 Credit Hours.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 8004</td>
<td>Seminar</td>
<td>4</td>
</tr>
<tr>
<td>CS 8005</td>
<td>Seminar</td>
<td>5</td>
</tr>
<tr>
<td>CS 8006</td>
<td>Seminar</td>
<td>6</td>
</tr>
<tr>
<td>CS 8030</td>
<td>Software Engineering Seminar</td>
<td>1</td>
</tr>
<tr>
<td>CS 8750</td>
<td>Robotics Research Foundation I</td>
<td>3</td>
</tr>
<tr>
<td>CS 8751</td>
<td>Robotics Research Foundation II</td>
<td>3</td>
</tr>
<tr>
<td>CS 8795</td>
<td>Colloquium in Cognitive Sciences</td>
<td>1</td>
</tr>
<tr>
<td>CS 8801</td>
<td>Special Topics</td>
<td>1</td>
</tr>
<tr>
<td>CS 8802</td>
<td>Special Topics</td>
<td>2</td>
</tr>
<tr>
<td>CS 8803</td>
<td>Special Topics</td>
<td>3</td>
</tr>
<tr>
<td>CS 8804</td>
<td>Special Topics</td>
<td>4</td>
</tr>
<tr>
<td>CS 8805</td>
<td>Special Topics</td>
<td>5</td>
</tr>
<tr>
<td>CS 8806</td>
<td>Special Topics</td>
<td>6</td>
</tr>
<tr>
<td>CS 8893</td>
<td>Special Topics in Cognitive Science</td>
<td>3</td>
</tr>
<tr>
<td>CS 8901</td>
<td>Special Problems</td>
<td>1-21</td>
</tr>
<tr>
<td>CS 8902</td>
<td>Special Problems</td>
<td>1-21</td>
</tr>
<tr>
<td>CS 8903</td>
<td>Special Problems</td>
<td>1-21</td>
</tr>
<tr>
<td>CS 8997</td>
<td>Teaching Assistantship</td>
<td>1-6</td>
</tr>
<tr>
<td>CS 8998</td>
<td>Research Assistantship</td>
<td>1-9</td>
</tr>
<tr>
<td>CS 8999</td>
<td>Doctoral Thesis Preparation</td>
<td>1-21</td>
</tr>
<tr>
<td>CS 9000</td>
<td>Doctoral Thesis</td>
<td>1-21</td>
</tr>
</tbody>
</table>