PHYS 1000. Physics Orientation. 1 Credit Hour.
Guest lectures will describe career opportunities in physics; the role physicists play in education, government, and industrial laboratories; and programs available to physics majors.

PHYS 11X1. Transfer Non-Calc Phys I. 1-21 Credit Hours.

PHYS 11X2. Transfer Non-Calc PhysII. 1-21 Credit Hours.

PHYS 1XXX. Physics Elective. 1-21 Credit Hours.

PHYS 2001. Physics of Space and Time. 2 Credit Hours.
The development of physics concepts and doctrines from early times to the near future, with social and philosophical correlates.

PHYS 2021. Introduction to Astronomy I. 3 Credit Hours.
This course covers Ancient and Renaissance astronomy, gravity, sky phenomena, telescopes, and the solar system.

PHYS 2022. Introduction to Astronomy II. 3 Credit Hours.

PHYS 2030. Physics Of Music. 2 Credit Hours.
An introduction to the physical principles underlying the production, transmission, and detection of musical sounds.

PHYS 2211. Introductory Physics I. 4 Credit Hours.

PHYS 2212. Introductory Physics II. 4 Credit Hours.

PHYS 2213. Introduction to Modern Physics. 3 Credit Hours.
A survey of twentieth century physics. Developments of several branches of physics up to their present frontiers, including historical and philosophical perspectives.

PHYS 2231. Honors Physics I. 5 Credit Hours.
Parallels introductory Physics I (PHYS 2211). Some topics treated in more depth or more extensively. A rigorous physics foundation requiring demonstrated competence in mathematics.

PHYS 2232. Honors Physics II. 5 Credit Hours.
Parallels introductory Physics II (PHYS 2212). Some topics treated in more depth or more extensively. No modern physics content. A rigorous physics foundation requiring demonstrated competence in mathematics.

PHYS 25X1. Transfer Physics I. 4 Credit Hours.

PHYS 2698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 2699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 2750. Physics of the Weather. 3 Credit Hours.
An introductory treatment applying basic physical laws to understanding weather phenomena. Crosslisted with EAS 2750.

PHYS 2801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2814. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics.

PHYS 2900. Special Problems. 1-21 Credit Hours.
Course involving special problems in physics are offered from time to time.

PHYS 2901. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 2902. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 2XXX. Physics Elective. 1-21 Credit Hours.

PHYS 3021. Nuclear Astrophysics and Stellar Evolution. 3 Credit Hours.
Develops a working knowledge of stellar and extra-stellar galactic astronomy. Includes stellar structure, nucleosynthesis, stellar evolution, and degenerate objects.

PHYS 3043. Principles of Quantum Mechanics. 3 Credit Hours.
A first introduction to wave mechanics, with emphasis on practical calculations. The rules of quantum mechanics will be illustrated by many working examples.

PHYS 3122. Electrostatics and Magnetostatics. 3 Credit Hours.

PHYS 3123. Electrodynamics. 3 Credit Hours.
Second of two courses on the physics of electromagnetism. Topics include time-dependent phenomena including Faraday's Law, the Maxwell equations, electromagnetic radiation, and electromagnetic waves.

PHYS 3141. Thermodynamics. 3 Credit Hours.
Introduction to the basic concepts of thermodynamics. Thermodynamic laws will be developed with an emphasis on the macroscopic point of view. Applications of the basic principles will be considered briefly.

PHYS 3143. Quantum Mechanics I. 3 Credit Hours.
First of two courses that develop the principles of quantum mechanics. Topics include the state vector concept. Heisenberg and Schrodinger pictures, uncertainty relations, and exact solvable models in one dimension.

PHYS 3151. Mathematical Physics. 3 Credit Hours.
A review of the mathematical techniques required for the description of physical systems encountered in mechanics, electromagnetism, thermal physics, and quantum mechanics.

PHYS 3201. Classical Mechanics I. 3 Credit Hours.
Dynamics of particles including oscillations and planetary motion, rotation of rigid bodies, and collisions.

PHYS 3202. Classical Mechanics II. 3 Credit Hours.
A continuation of PHYS 3201. Topics include Lagrangians and Hamiltonian techniques, and many-body mechanics.

PHYS 3211. Electronics I. 5 Credit Hours.
A first course in both theoretical and applied electronics that is based on a thorough grounding in circuit as well as device physics.

PHYS 3223. Geometrical Optics and Lens Design. 3 Credit Hours.
Principles of geometrical optics using ray tracing techniques. Stops, pupils, aberrations, and photometry. Design and analysis of lenses using current lens design software.
PHYS 3224. Geometrical Optics Laboratory. 2 Credit Hours.
Measurement of parameters of optical surfaces, lenses, and systems using a variety of techniques.

PHYS 3225. Modern Optics. 3 Credit Hours.
Principles of wave propagation, coherence, polarization, diffraction, and Fourier Optics; laser theory including the interaction of light with matter.

PHYS 3226. Advanced Optical Physics Laboratory. 2 Credit Hours.
Measurement of parameters of optical surfaces, lenses, and systems using a variety of modern optics techniques.

PHYS 3232. Optics I. 3 Credit Hours.
Optics principles, including waves, reflection, refraction, absorption, scattering, group velocity, lasers, polarization geometrical optics, the Fourier transform, coherence, interference, and diffraction.

PHYS 3265. Introduction to Acoustics. 3 Credit Hours.
A course in classical acoustics and applied electroacoustics taught through the palliative of a study of sound reinforcement and reproduction systems.

PHYS 3266. Computational Physics. 4 Credit Hours.
Computer solutions of realistic physics problems such as projectiles in resistive media, electromagnetic sources and fields, atomic scattering, and band pass filters.

PHYS 3801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3800. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3901. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 3902. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4206. Electronics II. 5 Credit Hours.
A course in electronic instrumentation with an emphasis on signal processing, both analog and digital, and computer interfacing.

PHYS 4220. Optical Design. 3 Credit Hours.
Principles of optical and optomechanical design including tolerancing, specification, and thermal compensation of systems.

PHYS 4222. Solid-state Devices. 3 Credit Hours.

PHYS 4247. Cosmology. 3 Credit Hours.
Modern cosmology of the universe, with the emphasis on the origin and evolution of galaxies and clusters of galaxies, inflation, the cosmic microwave background, dark matter and dark energy.

PHYS 4251. Biophysics. 3 Credit Hours.
Physical principles applied to molecular and cellular biology. Topics include chemiosmosis, self-assembly, protein biosynthesis, and the mechanisms of muscle and nerve function.

PHYS 4261. Atomic Physics. 3 Credit Hours.
Course provides an introduction to the fundamentals of atomic physics, the structure of atoms, and their interaction with static and radiation fields.

PHYS 4262. Solid-state Physics. 3 Credit Hours.
A first course in the physics of crystalline solids. Core topics include crystal lattices, diffraction, bonding, elastic properties, band theory, as well as others.

PHYS 4263. Nuclei, Particles, and Fields. 3 Credit Hours.
An introduction to nuclear and subnuclear systems. Topics include nuclear models, radioactive decay, nuclear reactions, quarks, accelerators, reactors, and stellar nucleosynthesis.

PHYS 4267. Nonlinear Dynamics and Chaos. 3 Credit Hours.
A modern introduction to nonlinear phenomena. Topics include driven oscillators, entrainment, bifurcation, fractals, and control of chaos. Examples are drawn from physical systems.

PHYS 4321. Advanced Laboratory I. 3 Credit Hours.
Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 4322. Advanced Laboratory II. 3 Credit Hours.
A continuation of PHYS 4321. Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 4347. Fundamentals of Astrophysics. 3 Credit Hours.
Modern cosmology of the universe, with the emphasis on the origin and evolution of galaxies and clusters of galaxies, inflation, the cosmic microwave background, dark matter and dark energy.

PHYS 4412. Statistical Mechanics. 3 Credit Hours.
The statistical basis of thermodynamics is developed. Topics include entropy and the second law, partition functions and free energy, systems of variable particle number, and quantum statistics.

PHYS 4413. Quantum Mechanics II. 3 Credit Hours.
Second of two courses that develop the principles of quantum mechanics. Topics include angular momentum, hydrogen atom, variation methods, perturbation theory, matter-radiation interactions, identical particles.

PHYS 4417. Relativity. 3 Credit Hours.
The course provides an introduction to the special and general theories of relativity that govern gravitational physics including experimental tests, astrophysical applications, black holes and gravitational waves.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4655.</td>
<td>Introductory</td>
<td>4 Credit Hours.</td>
</tr>
<tr>
<td></td>
<td>Diffraction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Studies.</td>
<td></td>
</tr>
<tr>
<td>PHYS 4698.</td>
<td>Undergraduate</td>
<td>1-12 Credit</td>
</tr>
<tr>
<td></td>
<td>Research</td>
<td>Hours.</td>
</tr>
<tr>
<td>PHYS 4699.</td>
<td>Undergraduate</td>
<td>1-12 Credit</td>
</tr>
<tr>
<td></td>
<td>Research.</td>
<td>Hours.</td>
</tr>
<tr>
<td>PHYS 4751.</td>
<td>Laser Theory</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4782.</td>
<td>Quantum</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td></td>
<td>Information</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and Quantum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computing.</td>
<td></td>
</tr>
<tr>
<td>PHYS 4801.</td>
<td>Special Topics</td>
<td>1 Credit Hour.</td>
</tr>
<tr>
<td>PHYS 4802.</td>
<td>Special Topics</td>
<td>2 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4803.</td>
<td>Special Topics</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4804.</td>
<td>Special Topics</td>
<td>4 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4900.</td>
<td>Special Problems</td>
<td>1-21 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4901.</td>
<td>Special Problems</td>
<td>1-21 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4902.</td>
<td>Special Problems</td>
<td>1-21 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 4XXX.</td>
<td>Physics Elective</td>
<td>1-21 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6011.</td>
<td>Nuclear and Particle Physics</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6012.</td>
<td>Classical Mechanics I</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6013.</td>
<td>Electromagnetism I</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6014.</td>
<td>Electromagnetism II</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6015.</td>
<td>Quantum Mechanics I</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6016.</td>
<td>Quantum Mechanics II</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6017.</td>
<td>Statistical Mechanics</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6018.</td>
<td>Survey of Physics</td>
<td>5 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6019.</td>
<td>Mathematical Methods of Physics I</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6020.</td>
<td>Applied Quantum Mechanics</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6021.</td>
<td>Applied Electromagnetism</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6022.</td>
<td>Solid State Physics</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6023.</td>
<td>Electronics I</td>
<td>4 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6024.</td>
<td>Electronics II</td>
<td>4 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6025.</td>
<td>Condensed Matter Physics I</td>
<td>3 Credit Hours.</td>
</tr>
<tr>
<td>PHYS 6026.</td>
<td>Condensed Matter Physics II</td>
<td>3 Credit Hours.</td>
</tr>
</tbody>
</table>

PHYS 4655. Introductory Diffraction Studies. 4 Credit Hours.
Introductory theory and practice of x-ray and neutron diffraction techniques, including single crystals and powders. Laboratory work is strongly correlated with principles developed in the lectures.

PHYS 4698. Undergraduate Research Assistantship. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 4699. Undergraduate Research. 1-12 Credit Hours.
Independent research conducted under the guidance of a faculty member.

PHYS 4751. Laser Theory and Applications. 3 Credit Hours.
Provides an introduction to the theory and applications of laser principles and related instrumentation. Emphasis is on the fundamental principles underlying laser action. Crosslisted with ECE 4751.

PHYS 4782. Quantum Information and Quantum Computing. 3 Credit Hours.
Introduction to quantum computing and quantum information theory, formalism of quantum mechanics, quantum gates, algorithms, measurements, coding, and information. Physical realizations and experiments. Crosslisted with MATH 4782.

PHYS 4801. Special Topics. 1 Credit Hour.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4802. Special Topics. 2 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4803. Special Topics. 3 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4804. Special Topics. 4 Credit Hours.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4900. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4901. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4902. Special Problems. 1-21 Credit Hours.
Courses involving special problems in physics are offered from time to time.

PHYS 4XXX. Physics Elective. 1-21 Credit Hours.

PHYS 6011. Nuclear and Particle Physics. 3 Credit Hours.
Quantum mechanics of nuclear and subnuclear systems. Topics include shell, collective and pairing models; multi-quark systems; group theoretical and dynamic algebra techniques.

PHYS 6012. Classical Mechanics I. 3 Credit Hours.
Newtonian mechanics, Hamilton's variational principle, Lagrangian and Hamiltonian mechanics, central forces, rigid body motion, and small oscillations.

PHYS 6013. Classical Mechanics II. 3 Credit Hours.
Canonical transformations, Hamilton-Jacobi theory, canonical perturbation theory, and an introduction to the Lagrangian formulations for continuous systems and fields.

PHYS 6014. Electromagnetism I. 3 Credit Hours.

PHYS 6015. Electromagnetism II. 3 Credit Hours.
Theory of generation of electromagnetic waves, their propagation, scattering, and diffraction. Covariant formulation of electrodynamics and application to radiation from charged particles.

PHYS 6016. Quantum Mechanics I. 3 Credit Hours.
An axiomatic development of quantum mechanics. Topics include linear vector spaces, linear operators, infinitesimal transformations, function space, representation and transformation groups.

PHYS 6017. Quantum Mechanics II. 3 Credit Hours.
Applications of quantum mechanics. Topics include systems with spin and angular momentum, atomic structure, time-dependent phenomena, scattering, and various methods of modeling and approximations.

PHYS 6018. Statistical Mechanics I. 3 Credit Hours.
Equilibrium statistical mechanics for closed and open systems. Probability distribution for classical and quantum systems. Partition functions and associated thermodynamical potentials.

PHYS 6019. Survey of Physics. 5 Credit Hours.
This course provides a review of basic theories in classical and quantum physics through the solution of problems. It provides an excellent preparation for students planning to take the doctoral qualifying exam. This course cannot be used for credit toward a graduate degree in physics.

PHYS 6020. Mathematical Methods of Physics I. 3 Credit Hours.
First of two courses on mathematical methods used in classical mechanics, electromagnetism, quantum mechanics, and statistical physics. Topics include complex analysis, vectors and matrices, and Sturm-Liouville theory.

PHYS 6021. Mathematical Methods of Physics II. 3 Credit Hours.
Second of two courses on mathematical methods. Topics include partial differential equations, random processes, and group theory.

PHYS 6022. Applied Quantum Mechanics. 3 Credit Hours.
Basic postulates of quantum mechanics, one-dimensional energy eigenvalue problems. Potential wells, tunneling phenomena.

PHYS 6023. Applied Electromagnetism. 3 Credit Hours.
A course centered on the solution of practical problems encountered in the transmission and reception of electromagnetic signals via transmission lines, waveguides, and radiation.

PHYS 6024. Solid State Physics. 3 Credit Hours.
A first course in the physics of crystalline solids. Core topics include crystal lattices, diffraction, bonding, elastic properties, band theory, as well as others.

PHYS 6025. Electronics I. 4 Credit Hours.
A first course in both theoretical and applied electronics that is based on a thorough grounding in circuit as well as device physics.

PHYS 6026. Electronics II. 4 Credit Hours.
A course in electronic instrumentation with an emphasis on signal processing, both analog and digital, and computer interfacing.

PHYS 6027. Condensed Matter Physics I. 3 Credit Hours.
Introduction to condensed matter physics. Crystal structure, electronic and thermal properties, response to external electric and magnetic fields.
PHYS 6211. Condensed Matter Physics II. 3 Credit Hours.
Collective and many-electron properties in condensed matter systems. Topics include second quantization, magnetism, phase transitions, and superconductivity.

PHYS 6265. Atomic Physics I. 3 Credit Hours.
This course provides a detailed description of atomic structures and interactions. It contains applications of advanced quantum mechanics to problems in modern atomic physics.

PHYS 6267. Atomic Physics II. 3 Credit Hours.
This course will provide detailed descriptions of non-relativistic atomic/molecular scattering/reaction processes.

PHYS 6268. Nonlinear Dynamics and Chaos. 3 Credit Hours.
A modern introduction to nonlinear phenomena. Topics include driven oscillators, entrainment, bifurcation, fractals, and control of chaos. Examples are drawn from physical systems.

PHYS 6300. Graduate Laboratory. 3 Credit Hours.
Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 6567. Ultrafast Optics. 3 Credit Hours.
A modern introduction to ultrafast optical phenomena. Topics include the generation, amplification, measurement, nonlinear optics, propagation, focusing, and shaping of ultrashort laser pulses.

PHYS 6771. Optoelectronics: Materials, Processes, Devices. 3 Credit Hours.
Optoelectronic materials, physical processes, and devices. Includes compound semiconductor materials, excitation, recombination, gain, and modulation processes, and devices such as emitters, detectors, and modulators. Crosslisted with ECE 6771.

PHYS 6787. Quantitative Electrophysiology. 3 Credit Hours.
A quantitative presentation of electrophysiological systems in biomedical organisms, emphasizing the electrical properties and modeling of neural and cardiac cells and systems. Crosslisted with BMED and ECE 6787.

PHYS 7100. Master's Thesis. 1-21 Credit Hours.

PHYS 7123. Statistical Mechanics II. 3 Credit Hours.
Principles of nonequilibrium statistical mechanics, both classical and quantal. Emphasis is on the dynamics of fluctuations, their measurement, and their relationship to transport properties.

PHYS 7125. Introduction to Relativity. 3 Credit Hours.
The theory of gravity, describing how matter curves spacetime and spacetime guides matter, with its experimental and theoretical applications.

PHYS 7141. Many-Particle Quantum Mechanics. 3 Credit Hours.
Quantum mechanics of interacting Fermi and Bose particles. Topics include second quantization, diagrammatic perturbation theory, variational methods, and path integrals.

PHYS 7143. Group Theory and Quantum Mechanics. 3 Credit Hours.
Foundations of group representation theory with applications in atomic, molecular, nuclear, and solid state physics.

PHYS 7147. Quantum Field Theory. 3 Credit Hours.
Introduction to quantum field theory, with an emphasis in quantum electrodynamics. Second quantization, Dirac equation, Feynman diagrams, quantum electrodynamics, electro-weak interactions.

PHYS 7150. Quantum Logics. 3 Credit Hours.
The revision of classical logic and set theory to accommodate the phenomena of quantum interference, with experimental and theoretical consequences.

PHYS 7221. Statistical Optics. 3 Credit Hours.
Phenomena in optics where randomness is dominant. Topics include random variables and processes, partial coherence, polarization, photo statistics, and imaging in random media.

PHYS 7222. Quantum Optics I. 3 Credit Hours.
Basic course on the interaction of light with matter, based on quantum theory. Applications to the laser and to the study of coherence properties of light.

PHYS 7223. Quantum Optics II. 3 Credit Hours.
Advanced treatment of the interaction of light with matter using modern methods of open quantum systems. Applications to current research.

PHYS 7224. Nonlinear Hamiltonian Dynamics and Chaos. 3 Credit Hours.
A course on nonlinear dissipative dynamical systems, with an emphasis in aspects relevant to physicists. Topics include bifurcation theory, attractors, renormalization group techniques, and pattern formation.

PHYS 7268. Spatio-Temporal Dynamics and Pattern Formation. 3 Credit Hours.
A theoretical description of dynamics and pattern formation in physical, chemical, and biological systems driven out of equilibrium. Topics include linear and weakly nonlinear analysis of patterns, bifurcation theory and amplitude equations.

PHYS 8001. Seminar. 1 Credit Hour.
Representative research programs in the School are described by advanced graduate students, post-doctoral fellows, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8002. Graduate Student Seminar. 1 Credit Hour.
Representative research programs in the School are described by advanced graduate students, post-doctoral fellows, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8801. Special Topics. 1 Credit Hour.

PHYS 8802. Special Topics. 2 Credit Hours.

PHYS 8803. Special Topics. 3 Credit Hours.

PHYS 8804. Special Topics. 4 Credit Hours.

PHYS 8901. Special Problems. 1-21 Credit Hours.

PHYS 8991. Master's Practicum. 1-21 Credit Hours.

PHYS 8992. Master's Practicum. 1-21 Credit Hours.

PHYS 8993. Master's Practicum. 1-21 Credit Hours.

PHYS 8997. Teaching Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate teaching assistantship.

PHYS 8998. Research Assistantship. 1-9 Credit Hours.
For graduate students holding a graduate research assistantship.

PHYS 9000. Doctoral Thesis. 1-21 Credit Hours.