The School of Electrical and Computer Engineering offers two undergraduate degree programs: electrical engineering (EE) and computer engineering (CmpE). Both programs include elective hours, enabling students to individually tailor their programs to provide emphasis in a particular specialization or exposure to a broad range of subjects. Engineering analysis and design concepts are integrated throughout both programs, culminating in a common major design experience involving a broad range of issues including economic and societal considerations.

The field of computer engineering is centered in digital design, computer architecture, computer networks and internetworking, and computer applications. The BS CmpE program offers elective courses in a wide variety of specializations, including computer architecture; embedded systems and software; design tools, test, and verification; computer networks and internetworking; distributed systems and software; and VLSI design. Additionally, students may elect to take advanced courses in other EE specializations, computer science, or programs, such as mathematics, physics, or management. As an alternative to the BS CmpE degree, students may choose a computer engineering specialization within the BS EE degree program.

Program Objectives

The School of Electrical and Computer Engineering has established the following student educational objectives for its undergraduate programs:

A. Graduates will be successful in the professional practice of engineering or other related fields. They will obtain employment appropriate to their background, interests, and education and will advance in their career field.

B. Graduates will engage in life-long learning, e.g., advanced education/degrees, professional development activities, and/or other career-appropriate options.

C. Graduates who are employed within engineering fields will demonstrate technical competence, such as identifying, formulating, analyzing, and creating engineering solutions using appropriate current engineering techniques, skills, and tools.

D. As appropriate to their professional or educational positions, graduates will
 i. effectively communicate technical information in multiple formats,
 ii. function effectively on teams, and
 iii. develop and apply electrical/computer engineering solutions within global, societal, and environmental contexts.

Additional information about program assessment (http://www.ece.gatech.edu/academics/accreditation.html) for all of the School’s programs is available on the ECE website.

Wellness

APPH 1040 Scientific Foundations of Health 2
or APPH 1050 The Science of Physical Activity and Health

Core A - Essential Skills

ENGL 1101 English Composition I 3
ENGL 1102 English Composition II 3

MATH 1552 Integral Calculus 3 4

Core B - Institutional Options

CS 1371 Computing for Engineers 3 3

Core C - Humanities

Any HUM (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/core-area-c) 1

Core D - Science, Math, & Technology

PHYS 2211 Introductory Physics I 1,2 4
PHYS 2212 Introductory Physics II 3 4
MATH 1551 Differential Calculus 3 2
MATH 1553 Introduction to Linear Algebra 3 2

Core E - Social Sciences

Choose one of the following:

HIST 2111 The United States to 1877 3
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues

Choose one of the following:

ECON 2100 Economic Analysis and Policy Problems 3
ECON 2101 The Global Economy
ECON 2105 Principles of Macroeconomics
ECON 2106 Principles of Microeconomics

Any SS (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/core-area-e)

Core F - Courses Related to Major

ECE 2020 Digital System Design 3 3
MATH 2551 Multivariable Calculus 3 4
MATH 2552 Differential Equations 3 4
CHEM 1310 General Chemistry 4
or CHEM 1211 Chemical Principles I

Science Elective 4 3

Ethics Requirement (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/ethics) 5

Probability/Statistics 9

Professional Communications 10

Major Requirements

ECE 2026 Introduction to Signal Processing 3 3
ECE 2031 Digital Design Laboratory 3 2
ECE 2035 Programming for Hardware/Software Systems 3 4

ECE 2036 Engineering Software Design 3 4
ECE 2040 Circuit Analysis 3 3
ECE 3020 Mathematical Foundations of Computer Engineering 3
ECE 3030 Physical Foundations of Computer Engineering 3

ECE 3056 Architecture, Concurrency, and Energy in Computation 3

ECE 4011 ECE Culminating Design Project I 3 2
ECE 4012 ECE Culminating Design Project II 3 3

Non-ECE Engineering Electives

ECE 4011 ECE Culminating Design Project I 3 2
ECE 4012 ECE Culminating Design Project II 3 3
in U.S. News & World Report as one of the top ten co-op programs in America. As an integral part of the overall education experience, the co-op program allows students to take on increasing levels of responsibility and to use their job knowledge and classroom learning to make meaningful contributions to the organizations in which they work. Many co-op graduates are hired by their co-op employer, and more than 700 companies or government organizations throughout the United States and abroad currently employ Georgia Tech Undergrad Co-Op Program students.

Because the School of ECE in Atlanta offers a wide range of electives and almost all required courses every term, including summer, co-op students have substantial flexibility in completing their degree requirements. Many students continue their co-op work assignments through the senior year. Additionally, co-op students working in the Atlanta area may be able to take certain ECE courses, particularly laboratories offered in the evening, during the work term.

In addition to the co-op program, the Center for Career Discovery and Development also offers the Undergraduate Professional Internship and Work Abroad programs. These programs also provide opportunities for students to gain practical work experience, without the long-term commitment of the co-op program.

Center for Career Discovery and Development (http://www.careerdiscovery.gatech.edu)

International Plan

The International Plan is intended for students who seek an intensive international experience integrated into their undergraduate studies in computer engineering. The International Plan develops global competence through a combination of coursework, language study, and residential overseas experience. Students who complete this option receive a designation on their transcript and diploma.

The computer engineering aspects of the BS CmpE - International Plan degree requirements are identical to those for the regular BS CmpE. Please refer to the BS CmpE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the International Plan designation through appropriate choices of electives without additional credit hours to complete the degree. The International Plan designation may be pursued separately, or in combination with the Cooperative Plan and/or the Research Option.

The School of Electrical and Computer Engineering offers a junior-year program at the Georgia Tech-Lorraine campus in Metz, France, that is designed to facilitate participation in the International Plan. However, computer engineering majors are not restricted to this option and may complete any allowable courses, languages, and overseas experiences that satisfy the International Plan requirements.

Research Option

The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in computer engineering. This option includes three or four semesters of structured research and provides an open evaluation of a student’s research capabilities, viewable by the public via a required Web-based research portfolio. Students who complete this option receive a designation on their transcript.
The computer engineering aspects of the BS CmpE-Research Option degree requirements are identical to those for the regular BS CmpE. Please refer to the BS CmpE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the Research Option designation through appropriate choices of electives without additional credit hours to complete the degree. The Research Option designation may be pursued separately, or in combination with the Cooperative Plan and/or the International Plan.

The School of Electrical and Computer Engineering (ECE) offers a two-semester Undergraduate Research Opportunity Program (UROP), which may be completed to provide a less-intensive research experience or as the initial phase of the Research Option. Contact the ECE Academic Office for additional information about the Research Option, including specific Institute and ECE requirements, and assistance in planning your schedule to allow participation in this program.

BS/MS Electrical and Computer Engineering

This program allows highly qualified students to receive the Bachelor of Science in either Electrical Engineering or Computer Engineering and a master’s degree in Electrical and Computer Engineering. The joint BS/MS degree program affords undergraduate electrical or computer engineering majors the opportunity to broaden their studies and improve their career prospects.

Eligible Georgia Tech undergraduates normally apply for this program during their junior year. Contact the Electrical and Computer Engineering Graduate Affairs Office for program information, eligibility requirements, and applications.

BS/MS Information (5 Year) (http://www.ece.gatech.edu/internal/students/bsms_prog)

Dual BS in Computer Engineering

Georgia Tech & Korea Advanced Institute of Science & Tech

Students may pursue the BSEE degree from the Korea Advanced Institute of Science and Technology (KAIST) as they earn the BSEE or BSCmpE from Georgia Tech. KAIST offers one of the top engineering programs in Korea and the Far East. All lectures at KAIST are given in English to better serve a growing number of students from overseas. While earning their dual degrees, students spend two years each at both Georgia Tech and KAIST.