BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

The School of Electrical and Computer Engineering offers two undergraduate degree programs:

- electrical engineering (EE) and
- computer engineering (CmpE).

Both programs include elective hours, enabling students to individually tailor their programs to provide emphasis in a particular specialization or exposure to a broad range of subjects. Engineering analysis and design concepts are integrated throughout both programs, culminating in a common major design experience involving a broad range of issues including economic and societal considerations.

The EE program offers elective courses in a wide variety of specializations including analog electronics, bioengineering, computer engineering, systems and controls, microsystems and nanosystems, electronics packaging, digital signal processing, optics and photonics, electrical energy, electromagnetics, and telecommunications. Additionally, students may elect to take advanced courses in other programs such as computer science, mathematics, physics, or management.

Program Objectives

The School of Electrical and Computer Engineering has established the following student educational objectives for its undergraduate programs:

1. Graduates will be successful in the professional practice of engineering or other related fields. They will obtain employment appropriate to their background, interests, and education and will advance in their career field.
2. Graduates will engage in life-long learning; e.g., advanced education/degrees, professional development activities, and/or other career-appropriate options.
3. Graduates who are employed within engineering fields will demonstrate technical competence, such as identifying, formulating, analyzing, and creating engineering solutions using appropriate current engineering techniques, skills, and tools.
4. As appropriate to their professional or educational positions, graduates will
 a. effectively communicate technical information in multiple formats,
 b. function effectively on teams, and
 c. develop and apply electrical/computer engineering solutions within global, societal, and environmental contexts.

Additional information about program assessment (http://www.ece.gatech.edu/academics/accreditation.html) for all of the School's programs is available on the ECE website.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
</table>
| Core A - Essential Skills

Wellness

APPH 1040 Scientific Foundations of Health 2
or APPH 10 The Science of Physical Activity and Health

Core B - Institutional Options

CS 1301 Introduction to Computing 3

Core C - Humanities

Any HUM (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/core-area-c) 6

Core D - Science, Math, & Technology

PHYS 2211 Introductory Physics I 4
PHYS 2212 Introductory Physics II 4
MATH 1551 Differential Calculus 3
MATH 1553 Introduction to Linear Algebra 2

Core E - Social Sciences

Select one of the following: 3

HIST 2111 The United States to 1877
HIST 2112 The United States since 1877
INTA 1200 American Government in Comparative Perspective
POL 1101 Government of the United States
PUBP 3000 American Constitutional Issues

Select one of the following: 3

ECON 2100 Economic Analysis and Policy Problems
ECON 2101 The Global Economy
ECON 2105 Principles of Macroeconomics
ECON 2106 Principles of Microeconomics

Any SS (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/core-area-e) 6

Core F - Courses Related to Major

ECE 2020 Digital System Design 3
MATH 2551 Multivariable Calculus 4
MATH 2552 Differential Equations 4
CHEM 1310 General Chemistry 3

Science Elective 4

Ethics Requirement (http://www.catalog.gatech.edu/academics/undergraduate/core-curriculum/ethics) 5
Probability/Statistics 5
Professional Communications 9

Major Requirements

ECE 2026 Introduction to Signal Processing 3
ECE 2031 Digital Design Laboratory 3
ECE 2035 Programming for Hardware/Software Systems 4

or ECE 2036 Engineering Software Design

ECE 2040 Circuit Analysis 3
ECE 3025 Electromagnetics 3
ECE 3040 Microelectronic Circuits 3
ECE 3043 Measurements, Circuits, and Microelectronics Laboratory 3
ECE 3072 Electrical Energy Systems 3
ECE 3084 Signals and Systems 3
ECE 4011 ECE Culminating Design Project I 3
Courses that are cross-listed with ECE must be taken under the ECE
Pass-fail only allowed for Approved Electives, Humanities, and Social
Sciences.

Courses that are cross-listed with ECE must be taken under the ECE
number.

1 Students must complete an Ethics requirement. For a complete list
of Ethics courses, please see: /academics/undergraduate/core-
curriculum/ethics/ (http://www.catalog.gatech.edu/academics/
undergraduate/core-curriculum/ethics)

2 If PHYS 2231 is taken, extra hour goes to Free Electives.

3 Minimum grade of C required.

4 Science Elective must be chosen from the following list: APH 3751,
BIOL 1510, BIOL 1520, BIOL 3751, CHEM 121K, CHEM 1315,
EAS 1500, EAS 1601, EAS 2600, PHYS 2021, PHYS 2022, or
PHYS 2213.

5 Students must complete one Ethics course during their
program. For a complete list of Ethics courses, please see: /
academics/undergraduate/core-curriculum/ethics/ (http://
www.catalog.gatech.edu/academics/undergraduate/core-
curriculum/ethics)

6 ECE 3811, ECE 3812, ECE 3901, ECE 3902, ECE 3903, ECE 4699,
ECE 4811, ECE 4812, ECE 4901, ECE 4902, and ECE 4903 not allowed.

7 The following courses are not allowed: HPS 1XXX,
LMC 2661, LMC 2662, LMC 3661, LMC 3662, MATH 1113, MUSI 1008,
MUSI 1009, MUSI 2008, MUSI 2009, MUSI 3008, MUSI 3009,
MUSI 4008, and MUSI 4009, PHYS 2XXX (AP Credit). Maximum of six
credit hours of Special Problems.

8 CEE 3770 or ISYE 3770 or MATH 3670 or ECE 3077 (Must be taken on
Letter/Grade basis)

9 ECE 3005 or ECE 3006

10 ECE 4043 or ECE 4180 or ECE 4185 or ECE 4446 or ECE 4452 or
ECE 4502 or ECE 4550 or ECE 4612 or ECE 4752 or ECE 4881 or
ECE 4884 (with title ‘Optical Fiber Communications’)

11 Non-ECE Engineering Electives (5 credit hours; 2 Courses) 2000-level
or above. Each course must be at least a 2 credit hour course. Allow
only subject codes of AE, BMED, CEE, CHBE, COE, ISYE, ME, MSE, or
NRE.

12 Cannot include BMED 2400, BMED 4781, BMED 4782, BMED 4783,
BMED 4784, CHBE 2120, CHBE 4752, COE 3002, ISYE 2027,
ISYE 2028, ME 2016, ME 2110, ME 4781, or ME 4782.

13 Cannot include any 28XX Special Topics courses or any Special
Problems courses. Can only include one Thermodynamics course and
one Dynamics course.

14 9 credit hours must be 4000-level

Cooperative Plan

The Georgia Tech Undergraduate Cooperative Education Program allows
students to combine classroom study with paid practical work experience
directly related to the academic major. Co-ops alternate semesters of
on-campus study with semesters of full-time employment, normally
beginning the program as freshmen or sophomores. Over 30 percent of
ECE undergraduates participate in the co-op program.

The degree requirements for students in the co-op program are the
same as those for other students in the major. The Cooperative Plan
designation may be pursued separately or in combination with the
International Plan and/or the Research Option.

Begun in 1912, Georgia Tech’s program is currently the largest optional
coop program in the United States and has perennially been listed
in U.S. News & World Report as one of the top ten co-op programs
in America. As an integral part of the overall education experience,
the co-op program allows students to take on increasing levels of
responsibility and to use their job knowledge and classroom learning
to make meaningful contributions to the organizations in which they
work. Many co-op graduates are hired by their co-op employer, and more
than 700 companies or government organizations throughout the
United States and abroad currently employ Georgia Tech Undergrad Co-op
Program students.

Because the School of ECE in Atlanta offers a wide range of electives and
almost all required courses every term, including summer, co-op students
have substantial flexibility in completing their degree requirements. Many
students continue their co-op work assignments through the senior year.
Additionally, co-op students working in the Atlanta area may be able to
take certain ECE courses, particularly laboratories offered in the evening,
during the work term.

In addition to the co-op program, the Center for Career Discovery and
Development also offers the Undergraduate Professional Internship
and Work Abroad programs. These programs also provide opportunities
for students to gain practical work experience, without the long-term
commitment of the co-op program.

Center for Career Discovery and Development (http://
www.careerdisccovery.gatech.edu)

International Plan

The International Plan is intended for students who seek an intensive
international experience integrated into their undergraduate studies
in electrical engineering. The International Plan develops global
competence through a combination of coursework, language study, and
residential overseas experience. Students who complete this option
receive a designation on their transcript and diploma.

The electrical engineering aspects of the BS EE - International Plan
degree requirements are identical to those for the regular BS EE. Please
refer to the BS EE catalog description for general information about
the degree program. Students may be able to satisfy the additional
requirements imposed for the International Plan designation through
appropriate choices of electives without additional credit hours to
complete the degree. The International Plan designation may be pursued
separately or in combination with the Cooperative Plan and/or the
Research Option.

The School of Electrical and Computer Engineering offers a junior-year
program at the Georgia Tech-Lorraine campus in Metz, France, that is
designed to facilitate participation in the International Plan. However, electrical engineering majors are not restricted to this option and may complete any allowable courses, languages, and overseas experiences that satisfy the International Plan requirements.

International Plan (http://www.internationalplan.gatech.edu)

Research Option
The Research Option is intended for students who seek a concentrated research experience, culminating in an undergraduate thesis, integrated into their undergraduate studies in electrical engineering. This option includes three or four semesters of structured research and provides an open evaluation of a student’s research capabilities, viewable by the public via a required Web-based research portfolio. Students who complete this option receive a designation on their transcript.

The electrical engineering aspects of the BS EE - Research Option degree requirements are identical to those for the regular BS EE. Please refer to the BS EE catalog description for general information about the degree program. Students may be able to satisfy the additional requirements imposed for the Research Option designation through appropriate choices of electives without additional credit hours to complete the degree. The Research Option designation may be pursued separately, or in combination with the Cooperative Plan and/or the International Plan.

The School of Electrical and Computer Engineering (ECE) offers a two-semester Undergraduate Research Opportunity Program (UROP), which may be completed to provide a less-intensive research experience or as the initial phase of the Research Option. Contact the ECE Academic Office for additional information about the Research Option, including specific Institute and ECE requirements, and assistance in planning your schedule to allow participation in this program.

BS/MS Electrical and Computer Engineering
This program allows highly qualified students to receive the Bachelor of Science in either Electrical Engineering or Computer Engineering and a master’s degree in Electrical and Computer Engineering. The joint BS/MS degree program affords undergraduate electrical or computer engineering majors the opportunity to broaden their studies and improve their career prospects.

Eligible Georgia Tech undergraduates normally apply for this program during their junior year. Contact the Electrical and Computer Engineering Graduate Affairs Office for program information, eligibility requirements, and applications.

Dual BS in Electrical Engineering
Georgia Tech & Korea Advanced Institute of Science and Tech
Students may pursue the BSEE degree from the Korea Advanced Institute of Science and Technology (KAIST) as they earn the BSEE or BScmpE from Georgia Tech. KAIST offers one of the top engineering programs in Korea and the Far East. All lectures at KAIST are given in English to better serve a growing number of students from overseas. While earning their dual degrees, students spend two years each at both Georgia Tech and KAIST.